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1. Introduction 

The ecological basis for disease dates at least as far back as 400 B.C. to Hippocrates’s writing of On Airs, 
Waters, and Place. As Wilson (1995) clarifies, our understanding and therefore control of diseases would 
be inadequate without an “ecological” perspective on the life cycles of parasitic microorganisms and the 
associated infectious diseases. As Smith et al. (1999; p 583) contend, “many of the critical health 
problems in the world today cannot be solved without major improvement in environmental quality.” In 
this chapter we focus on malaria because its transmission (and control) has clear links to ecosystem 
changes that result from natural resource policies such as land tenure, road building, and agricultural 
subsidies. The resulting ecosystem change has a tremendous influence on the pattern of diseases such as 
malaria (Martens 1998; Molyneux 1998; Grillet 2000). This is partly because, of all the forest species that 
transmit diseases to human beings, mosquitoes are among the most sensitive to ecosystem change: their 
survival, density, and distribution have been altered by environmental changes caused by different land 
transformations. While we agree that ‘ecological lenses’ can help improve our understanding of disease 
prevention, we use this chapter to articulate a particular ecological perspective – a human ecology 
viewpoint that puts human behavior change front and center.  

In the last decade, we have seen a series of widely cited papers drawing out the connections between 
ecosystem change and diseases, many of which are synthesized in the 2005 Millennium Ecosystem 
Assessment (Corvalan et al., 2005a; Corvalan et al. 2005b; Campbell-Lendrum, 2005; Patz et al., 2005; 
McMichael et al., 1998). This renewed interest in the more distal causes of disease reflects in part the 
emergence of new fields such as ‘sustainability science’ (Kates et al., 2001) and ‘biocomplexity’ (Wilcox 
and Colwell, 2003) that argue for “a more realistic view [requiring] a holistic perspective that 
incorporates social as well as physical, chemical, and biological dimensions of our planet’s systems.” The 
resurgence also reflects the growing importance of fields of social epidemiology (e.g., Berkman and 
Kawachi, 2000; Oakes and Kaufman, 2006) that draw on Rose’s (1985) call to examine the cause of 
cause and resolve the prevention paradox in developing a population strategy for health.  

In joining this growing chorus, we focus on an older human ecology tradition (Wessen, 1972; 
McCormack, 1984), which posits that (a) we humans modify our natural environment, sometimes 
increasing disease risks, and (b) we ultimately adapt to the new disease risk environment. Two stylized, 
yet complicating, facts emerge from this viewpoint (Pattanayak et al., 2006a). First, disease prevention 
behaviors (including ecosystem changes that modify disease risks) respond to disease levels, suggesting a 
dynamic feedback exposure and control. Second, individuals and households typically will not consider 
how their private actions affect public health outcomes and therefore will make socially inappropriate and 
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sub-optimal choices, unless convinced otherwise. Typically, some combination of government laws (e.g., 
regulation), community norms (information), and markets prices (compensation) help narrow this wedge 
between private and ‘optimal’ social behaviors. This modification of domain to now more systematically 
human behavior is consistent with complaints that the ecology-and-health approach takes a predominantly 
biophysical approach that can easily overlook the social, cultural, and economic driving forces that are 
crucial to understanding anthropogenic ecosystem disruptions and their human health impacts 
(McMichael, 2001; Parkes et al. 2003). 

In this chapter, we focus on malaria and deforestation, rather than a sweeping review of broad links 
between infectious diseases and ecosystem change to keep things manageable and present somewhat in-
depth arguments. We restrict ourselves to malaria not only because its transmission is clearly linked to 
ecological changes, but because it is a major (if not the major) health concern in the tropics (Hay et al., 
2004). We focus on deforestation because it is a major development policy concern and often heralds 
many other ‘malaria-causing’ land use changes (Pattanayak et al., 2006c). 

The remainder of the chapter is organized as follows. In Section II, we briefly review the literature on 
ecology of infectious diseases. In Section III, we re-introduce the human ecology perspective for better 
understanding the role of humans in land use change as well as in a variety of behaviors to prevent (e.g., 
sleep under nets, take prophylaxis) and treat (e.g., seek medical care, follow the drug regimen) malaria. In 
Section IV, we draw out the empirical implications of such a strategy, using our own fieldwork and 
secondary data sets. Finally, we conclude with a call for systematic environmental and health impact 
assessments that rely on inter-disciplinary longitudinal studies. 

2. A brief synthesis of mosquito ecology and malaria epidemiology 

While the impacts of ecosystem change on health are diverse and longstanding, its rate and geographical 
range have increased markedly over the last few decades.  Different kinds of environmental changes have 
resulted from a wide variety of human activities, including deforestation, agricultural activities, 
plantations, logging, fuel wood collection, road construction, mining, hydropower development and 
urbanization (Walsh et al. 1993, Patz et al. 2000, Patz et al. 2004).  It is the process of clearing forests and 
subsequent land transformation that alters every element of local ecosystems, including microclimate, soil 
and aquatic conditions, and most significantly, the ecology of local fauna and flora. These in turn have 
profound impact on the survival, density and distribution of human disease vectors and parasites (Martens 
1998, Grillet 2000), including influences on breeding places, daily survival probability, density, human-
biting rates, and incubation period. Thus, the altered vector/parasite ecology modifies the transmission of 
vector-borne diseases such as malaria, Japanese encephalitis and filariasis (Sharma and Kondrashin 1991, 
Walsh et al. 1993).   

Numerous country and area studies have described how the density and distribution of local vector 
species have been altered due to ecosystem change, and some longitudinal studies have shown that the 
change in vector ecology has altered local disease incidence and prevalence (Sharma and Kondrashin 
1991, Patz 2000).  However, the mechanism linking ecosystem change, vector ecology and vector-borne 
diseases is still unclear. We draw on a paper by Yasuoka and Levins (forthcoming) that examines the 
mechanisms linking deforestation, anopheline ecology, and malaria epidemiology by drawing together 60 
examples of changes in anopheline ecology as a consequence of deforestation and agricultural 
development in Latin America, Africa, and South and Southeast Asia.  

Massive clearing of forests has enormous impacts on local ecosystems and human disease pattern.  It 
alters microclimates by reducing shade, altering rainfall patterns, augmenting air movement, and 
changing the humidity regime (Reiter 2001).  It also reduces biodiversity and increases surface water 
availability through the loss of topsoil and vegetation root systems that absorb rain water (Chivian ed. 
2002).  For anopheline species that breed in shaded water bodies, deforestation can reduce their breeding 
habitats, thus affecting their propagation.  On the other hand, some environmental and climatic changes 



due to deforestation can facilitate the survival of other anopheline species, resulting in prolonged seasonal 
malaria transmission (Kondrashin et al. 1991).   

As shown in Table 1 (drawn from Yasuoka and Levins), different land transformations have different 
impacts on local ecosystem and disease pattern.  For example, rubber plantation increased local major 
malaria vectors in all four cases in Malaysia and Thailand.  In Malaysian hilly areas, forest clearance for 
rubber plantation, which started early in the 1900s, exposed the land and streams to the sun and created 
breeding places for An. maculatus, which led to an increase in this species and a marked rise in the 
incidence and severity of malaria (Cheong 1983).  Cyclic malaria epidemics in Malaysia over 50 years are 
correlated with rubber replanting in response to market fluctuations (Singh and Tham 1990). Another 
example is in Chantaburi, Thailand, where the land was transformed to rubber plantation and other fruit 
tree cultivations, such as rambutan, durian and mangosteen spurred by high markets between 1974 and 
1984.  The consequent ecological changes favored An. dirus, which demonstrated its greatest capability 
for adaptation in circumstances of rubber and fruit tree cultivations.  As a result, local malaria reemerged 
and malaria transmission was established at high levels (Rosenberg et al. 1990).  

All papers on the development of irrigation systems reported an increase in the density of major vectors 
and following increase in malaria incidence.  For example, irrigation schemes developed by the Mahi-
Kadan Project across the River Mahi in India in 1960 had typical management problems, including over-
irrigation, lack of proper drainage, weedy channels, leaking sluice gates, and water-logged fallow fields.  
These created extended breeding habitats for An. culicifacies, which resulted in an increase of the vector 
and malaria transmission.  

In some cases, different anopheline species responded differently to the same land transformation.  For 
example, due to deforestation for rice cultivation and irrigation development in Sri Lanka, An. annularis, 
An. barbirostris, An. culicifacies, and An. varuna decreased, while An. jamesii and An. subpictus 
increased, and An. nigerrimus and An. vagus did not change substantially (Amerasinghe et al. 1991; 
Konradsen et al. 2000).  Not only species abundance, but also species involvement in malaria 
transmission changed markedly during the land transformation.  Anopheles annularis, An. culicifacies and 
An. vagus were the main vectors during the construction phase and the first irrigation year.  Anopheles 
subpictus was playing a major role in the second and third years, when rice fields were fully irrigated.  
Throughout the process, An. culicifacies demonstrated continuous involvement in malaria transmission.   

Other cases demonstrated species replacement. Land use such as cassava and sugarcane cultivations, 
which need little water and provide little shade, often create unfavorable environment for anophelines, 
especially those which require shade.  In Thailand, the transformation from forest to cassava or sugarcane 
cultivations eliminated shady breeding habitats for the primary vector species, An. dirus, but created 
widespread breeding grounds for An. minimus, which have greater sun preference and was the 
predominant species throughout the year.  Consequently, malaria transmission among resettled cultivators 
became high (Prothero 1999).  

We also see that same kind of land transformation could result in totally different malaria situations, 
depending on locality and ecological characteristics of local vector species.  For example, deforestation 
followed by development of coffee plantations in southeast Thailand favored the breeding of An. minimus 
and made the previously malaria-free region to hyperendemic (Suvannadabba 1991).  On the contrary, in 
Karnataka, India, large-scale deforestation for coffee plantations reduced seepages, which were the 
principal breeding sites for An. fliviatilis, a vector responsible for hyper-endemic malaria in the region.  
As a result, this vector population completely collapsed, and malaria disappeared from the area (Karla 
1991).   

Deforestation for mine development is one of the examples that not only create breeding sites, but also 
significantly increase human contacts with vectors.  Where settlement and mining activities took place in 
the Amazon, An. darlingi increased because of the increase in breeding sites, including borrow pits after 
road or settlement constructions, drains, and opencast mine workings.  As a result, malaria, which was 



present in the Amazon’s indigenous population, was spread to immigrants and miners (Conn et al. 2002). 

In summary, the changes in anopheline density and malaria incidence are both varied and complex, 
depending on the kind of land transformation, ecological characteristics of local mosquitoes, and altered 
human behavior (to be discussed further). Some key findings include: 

 Some anopheline species were directly affected by deforestation and/or subsequent land use, some 
favored or could adapt to the different environmental conditions that were created, and some invaded 
and/or replaced other species in the process of development and cultivation.   

 Malaria incidence fluctuated according to different stages of development, changes in vector density, 
and altered human contact patterns with vectors.  

 More mosquitoes (vector density or variety) were neither a necessary nor a sufficient condition for 
increases in malaria incidence. In fact, inverse relationships between the vector abundance and 
disease incidence have been reported from different regions (Ijumba and Lindsay 2001, Amerasinghe 
2003), presumably because of human adaptations (see next).     

 In general, a complex set of macroeconomic (changes in terms of trade), demographic (e.g., 
migration), policy (e.g., colonization of forest frontiers) and behavioral (e.g., ‘malaria literacy and 
knowledge’) factors underlie the ecosystem changes and land transformations that influence mosquito 
ecology and malaria epidemiology (Sharma and Kondrashin 1991; Molyneux 1998). We turn to these 
considerations in some detail next. 

3. Revisiting the human ecology perspective  

If ecosystem changes impact mosquito density and activity, and possibly malaria incidence, then 
environmental management (e.g., vegetation management, modification of river boundaries, drainage of 
swamps, reduction of standing water, oil application etc.) could reverse these trends. Even though 
insecticide-treated bed nets and indoor residual spraying of insecticides are the predominant vector 
control tools, there is growing support for the management of vegetation and water bodies in light of 
increasing resistance to insecticides and antimalarials (Lindsay and Birley, 2004). Keiser et al.’s (2005) 
review of 24 environmental management studies suggests that environmental management can reduce 
malaria risk ratio by 88% (compared to 79.5% for human habitation modifications, for example). 

Furthermore, if these are indeed modifiable behavioral causes, it should be possible to induce these 
behaviors. Yasuoka et al. (2006a) conducted a 20-week pilot education program to improve community 
knowledge and mosquito control with participatory and non-chemical approaches in Sri Lanka. They 
evaluated their program effectiveness using pre-educational and post-educational surveys in two 
intervention and two comparison villages. Their controlled intervention shows that participatory 
education program led to improved knowledge of mosquito ecology and disease epidemiology, changes in 
agricultural practices, and an increase in environmentally sound measures for mosquito control and 
disease prevention. The success of the intervention was attributed to four ‘human ecology’ characteristics: 
a community-based education that enhanced residents’ understanding of the mosquito-borne disease 
problems in their own community, a participatory approach that allowed participants to gain hands-on 
experiences with actions to be taken, using non-chemical measures that decreased environmental and 
health risks in residential areas and paddy fields, and an approach that required no cost or extensive 
instruments. Furthermore, this community-based approach suppressed the density of adult Anopheles in 
the southwest monsoon season, though little impact was detected on Culex and Aedes densities (Yasuoka 
et al., 2006b). 

Vegetation and water management, however, are just one class of human behaviors that impact the 
transmission and control of malaria. The links between ecosystem change, vector ecology and disease 
epidemiology all depend critically on human density, gender ratio, immigration of non-immune people, 



and knowledge, attitudes and practices primarily because they alter the pattern and frequency of human 
contacts with vectors. Furthermore, a recent special colloquium of the International Society of Ecosystem 
Health (Patz et al., 2004) suggests that malaria can be exacerbated by a broad array of land use drivers 
and underlying human behavioral factors beyond changes to the biophysical environment. These include 
movement of populations, pathogens, and trade; agriculture; and urbanization. Deforestation features 
prominently in this review and is closely linked to many of these mechanisms.  

Pattanayak et al. (2006b) underscore this behavioral aspect of malaria control and present four reasons 
why it is important to understand the role of deforestation from a policy and planning perspective. These 
include:  

1. Deforestation is not merely the exogenous (remote control) removal of forest cover.  It is the 
beginning of an entire chain of activities, including forest clearing, farming, irrigation, livestock, and 
non-timber forest product collection, that have ecological (vector habitat) as well as behavioral 
(exposure and transmission) consequences for malaria.   

2. Deforestation is an integral part of life and the landscape in many parts of the world with high malaria 
rates (Donohue, 2003; Wilson, 2001). Consequently, sustainable forest management has become an 
important policy goal, as donor agencies and local policy makers take a more integrated view of 
people in the natural landscape.  The resulting changes in land cover, as well as changes in how 
people interact with the forest, have implications for malaria. Thus, conservation policies aimed at 
slowing deforestation will impact malaria (Taylor, 1997; and Walsh et al., 1993).     

3. Millions of rural households depend directly on a wide variety of forest products and services (Byron 
and Arnold, 1999).  By lowering local people’s natural wealth, deforestation can reduce household 
capacity to invest in health care and pay for malaria prevention and treatment.  At the same time, 
deforestation may increase the wealth of other households, who will then be better able to avoid and 
cure malaria. 

4. Deforestation and malaria are central elements of the vicious cycle of poverty in rural areas of 
developing countries.  In simplistic terms, malaria could be considered to “cause” deforestation, 
because malaria can make people poorer and poverty has been found to “cause” deforestation under 
some conditions.  In reality, the linkages are more complex and site-specific.  

These ideas lead us to a human ecology framework for understanding the links between deforestation and 
malaria. Human ecology involves the study of human–environment interactions and extends notions of 
ecology and health by explicitly traversing boundaries between “nature and culture” and “environment 
and society” (Parkes et al., 2003). Others have labeled these the ‘environmental health’ or the ‘ecology 
and health’ (Aron and Patz, 2001) perspectives. As Parkes et al. (2003) clarify, ultimately all these fields 
converge on three themes:  

(a) integrated approaches to research and policy,  

(b) methodological acknowledgment of the synergies between the social and biophysical environments,   

(c) incorporation of core ecosystem principles into research and practice 

Specific to malaria, we need a shift in the view of humans as passive or constant factors in malaria 
epidemiology to a view in which people are very active factors (actors) in causing significant changes in 
epidemiological patterns (Wessen, 1972; MacCormack, 1987). The centrality of human behavior is 
confirmed by the number of instances in which human behaviors show up in Figure 1 in this chapter and 
in the Patz et al. (2004) review.  



4. Empirics of human ecology: Approach and evidence 

In this section we present an initial attempt to examine the importance of human behaviors in malaria 
transmission and control, and recognize the “active” (dynamic) aspects of human behavioral response. 
Omitting behavioral responses from any analysis of malaria and ecosystem change would result in a 
classic case of confounding. Human behavior in this case has all attributes of a confounding factor 
because it is (a) correlated with the outcome and the risk factor, (b) not necessarily in the causal chain, 
and (c) very likely to be unbalanced across the different levels of risks. As such behavioral confounders 
can mimic the risk factor and mask the ecological relationship we are attempting to discover.  

What does this mean in practical terms? If we are, for example, using cross-sectional or time series 
variation in data on deforestation and malaria only, we will face what is labeled an “omitted variable” 
problem in statistics/econometrics. This problem leads to biased inferences and inconsistent estimates of 
policy parameters because the real cause is an omitted variable, e.g., the in-migration of susceptible sub-
populations. A second related and possibly more pernicious issue is that of endogeneity or reverse 
causality (or simultaneity).  Consider an example from Sawyer (1993) to better understand this 
‘endogeneity’ bias. High rates of malaria can encourage forms of land use in which men work as day 
laborers (in logging or ranching), allowing their wives and children to live in towns with relatively lower 
threat of malaria, rather than establishing family farms.  It in such a situation is often difficult to 
disentangle the causal role of deforestation in malaria transmission.  

To further investigate the empirical implications of these ‘behavioral’ or ‘human ecology’ models, we 
offer two simple tests that are conducted at three different scales. First, we compare a simple regression 
model of malaria and deforestation (‘naïve model’) to model including linear behavioral controls (‘linear 
controls model’). Second, we compare the same naïve model to one where the behavioral factors are used 
as determinants of deforestation or the ‘endogenous’ risk exposure. Behavior in this case is an instrument 
for the deforestation risk (the instrumental variable [IV] model). Economic theory provides one basis for 
identifying variables that can explain deforestation and thus serve as instruments (Sills and Pattanayak, 
2006).  

Arguably the naïve model is a bit of straw man, but it allows us to investigate the importance of a human 
ecology strategy. We conduct these evaluations at three scales: a micro analysis of child malaria and 
community deforestation (case from Indonesia), a meso analysis of regional malaria and regional 
deforestation (case from Brazil), and a macro analysis of national malaria and deforestation. Data 
limitations preclude the use of accurate behavioral indicators and force us to use proxy variables.2 Thus, 
our analysis should be considered as preliminary, and therefore illustrative of the overarching human 
ecology approach proposed here.  

4a. Macro analysis using global data from 120 countries 
In this case study, we examine the macro level correlation of malaria and forest using a global data set. 
Pattanayak et al. (2006) describe the combination of data from 5 sources to produce a global malaria 
dataset and use it to examine how disease prevention behaviors respond to disease levels. The World 
Health Organization’s Global Health Atlas provides data on a range of malaria variables, including the 
number of cases, for up to 195 countries from 1990 to 2004. The World Development Reports provide 
data on forest cover in 1990 and the annual rate of increase from 1990 to 2000. We obtain behavioral 
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proxies from three other sources. First, data from the 2001 Human Development Report (HDR) provides 
measures of economic conditions (per capita GDP) and social conditions (adult literacy rates, educational 
enrollment rates, and life expectancy). Second, Kaufmann et al. (2003) provide data on political stability, 
voice and accountability, and control of corruption. Additionally, we also include a malaria ecology index 
to capture vector ecology and climatic factors (Kiszewski et al., 2004). This index combines climatic 
factors (e.g., rainfall and precipitation), the presence of different mosquito vectors, and the human biting 
rates of these vectors to proxy for mosquito transmission. This index captures the ecological conditions 
with the strongest influence on the intensity of malaria prevalence and can therefore predict the actual and 
potential stability of transmission. Descriptive statistics and other details of the data compilation and 
synthesis are included in Pattanayak et al. (2006).  

Our key variable is the number of malaria cases in a country in the 1996-2000 period.  Various variables 
(malaria cases, malaria ecology index, and GDP index) are converted into natural logarithms to reduce 
scale differences, improve linearity and pull in outliers. Median regression methods are used. Results of 
the three models – naïve, linear controls, and IV are presented in columns 2, 3 and 4 of Table 2 (Panel 1). 
We report the coefficient on the deforestation variable, the probability value (p.value) associated with this 
coefficient and the overall significance of the model. The regression coefficient reflects the size and sign 
of the correlation with malaria incidence. The p.value reflects the statistical significance of the correlation 
(i.e., less than 0.1 is suggestive of a relationship).  

The naïve model is statistically significant and explains about 41% of the variation. We also find 
confirmation of our key hypothesis: annual rate of forest cover increase (during the 1990 to 2000 period) 
is negatively correlated with malaria incidence in the 1996-2000 period: more deforestation is positively 
correlated with higher levels of malaria. 

The linear-controls model (where we account for potential confounding due to GDP, school enrollment, 
voice and accountability, and stability of the governmental institutions) is also statistically significant and 
explains about 52% of the variation in the malaria cases. We also find that deforestation is positively 
correlated with malaria, except now the size of this correlation is twice as big. 

Finally, the IV model is also significant and explains about 54% of the variation. In this model, first 
behavioral variables are used to predict deforestation, and then the predicted deforestation is used to 
explain malaria. Again we see that the deforestation variable is positive correlated with malaria, but now 
the size of this coefficient is almost 4 times as big as the naïve model – providing a statistically significant 
evidence of a much stronger correlation between the disease and exposure change due to deforestation. 

4b. Meso (regional) analysis using the case of 480 Brazilian micro-regions 
In this case study, we examine the hypothesis regarding the regional level correlation of malaria and 
forest cover. We use a cross-sectional data set of approximately 490 Brazilian micro-regions, which in the 
Brazilian context is anything between one to twelve counties. The malaria data comes from DATASUS 
(website). It is reported in terms of 1000 inhabitants, and represents hospital morbidity over the 1992-
2000 period. Climate is represented by long run temperature and rainfall (averaged over several years) in 
the 490 micro-regions, based on weather stations that are located approximately one per micro-region. 
Census data (website address) on housing, population, education levels, income, medical care (proxied by 
number of doctors and hospital beds) and infrastructure (percent of the households connected to water, 
sanitation, and all-weather roads) is for 1991. Forest cover and vegetation data of the same vintage are 
from IPEA and protected area data is from INPE, both Brazilian data agencies. Pattanayak et al. (2006b) 
present additional detail on the compilation and use of this data in analysis.  

Instead of dwelling on the details on the analysis, we focus on the key results using the structure from the 
previous case study. The naïve model (including some ecological controls for weather) is statistically 
significant and explains 46% of the variation. First, we see that micro-regions with higher forest cover 



have lower rates of malaria, all things considered. Second we find that micro-regions with higher 
deforestation (in the 1985 to 1995 time period) have greater rates of malaria.  

The linear controls model (where we account for potential confounding due to demographics, income, 
infrastructure, and institutions such as protected areas) is statistically significant and explains 56% of the 
variation. First, we find that micro-regions with higher deforestation have greater rates of malaria – with 
the correlation that is significantly larger than the naïve model coefficients (almost twice as large). 
Second, micro-regions in the Amazon with conservation units have lower malaria rates for a given level 
of deforestation.  

Finally, the IV model uses a variety of regional factors – presence of protected area, distance to highway 
and to state capital, population, size and location of the micro-region – as instruments for deforestation in 
the micro-regions. The overall model is significant. Now the size of the deforestation coefficient is almost 
3 times as big as the linear-controls model. The results are consistent across the three models (i.e., 
deforestation is correlated with more malaria), but the sizes of the estimated coefficient are much larger 
(3-6 fold) in the models that include proxies for human behavior.  

4c. Micro analysis using data on 340 children from Flores, Indonesia 
Malaria is highly contextual, with incidence and transmission depending on local conditions, 
perturbations, and catastrophes.  Thus, household or community-level multi-factor research is perhaps 
best suited to incorporate the diversity and heterogeneity of the ecological, epidemiological, and 
economic phenomena surrounding malaria.  This case study examines the evidence on whether 
deforestation causes child malaria in the setting of Ruteng Park on Flores Islands in eastern Indonesia.  

The data for this analysis are drawn from a household survey in the Manggarai district of Flores, 
Indonesia in 1996 around a protected area (Ruteng Park), established to conserve biodiversity. The survey 
and accompanying secondary data collection generated household data on wealth, housing quality, and 
number of adults, as well as individual data on age, gender, occupation, education and disease history 
during the twelve months prior to the survey.  GIS is used to combine environmental statistics, including 
the amount and extent of primary and secondary forest cover at the village level, with the survey data and 
secondary data on public infrastructure such as sub-regional health care facilities. The sample includes 
approximately 340 kids under the age of 5. Given the binary nature of the data on malaria in kids under 
the age of 5, we estimate and report probit models of child malaria. Pattanayak et al. (2005) include 
details.   

Starting with the naïve model, we find that the overall model is significant and, this being micro data, 
explains only about 6% of the variation. We find that the extent of protected (primary) forest cover is not 
statistically related to malaria, whereas the extent of disturbed (secondary) forest is positively correlated 
with malaria rates.   

The linear-controls model accounts for potential confounding due to various individual, household and 
village characteristics. The overall model is significant, now explaining about 15% of the variability in 
the malaria data. As in the naïve model, the extent of disturbed forests is positively correlated with 
malaria (although now the coefficient is twice as big as before). Most interesting, we now confirm our 
key hypothesis that the extent of protected forests is indeed negatively correlated with malaria incidence.  

Finally, the IV model uses a variety of community level factors – distance to highway, population, village 
size, elevation, and rainfall – as instruments for protected and disturbed forest cover around the villages. 
The overall model is highly significant. Most crucially, now the sizes of the coefficients are almost 3 
times as big as the linear-controls model. Malaria in little children is highly positively correlated with the 
extent of disturbed forests and negatively correlated with the extent of protected forests.  



5. Concluding thoughts 

Vector-borne diseases such a malaria wreak havoc on the lives of many millions of people in poor, 
tropical countries, partly because these regions are exposed to environmental conditions such 
deforestation, livestock rearing, irrigated farming, road construction, and dam-building that encourage 
vector abundance and disease transmission. We argue that it is critical to focus on the deforestation 
linkage because it is the beginning of an entire chain of activities that affect malaria risks; can trigger 
behavioral changes due to accompanying increases or decreases in wealth; can lock communities into a 
vicious cycle of poverty, illness and environmental degradation; and is an integral part of the landscape 
and therefore of donor agencies and policy maker focus. Recognizing that deforestation often precedes 
many other relevant land use changes (particularly conversion to agriculture), taking deforestation as a 
starting point allows us to look at the impact of other elements in the “matrix of transformations.” As such 
it serves as a broad indicator of change in the ecology of infectious disease paradigm. This lead us to 
recommend a human ecology that focuses on the role of humans in land use change as well as in a variety 
of behaviors to prevent (e.g., sleep under nets, take prophylaxis) and treat (e.g., seek medical care, follow 
the drug regimen) malaria. We then review the implications of this framework change for empirical 
research and application – both in data collection and analysis and inference.  

The empirical case studies draw attention to the role of socio-economic determinants of malaria and 
importance of including behavioral variables in empirical models of malaria incidence and prevalence. 
They illustrate how omitting behavioral factors from the analysis can lead to erroneous and biased 
interpretations regarding the nature of ecosystem changes and disease transmission – the size, sign, and 
statistical significance of regression coefficients can be wrong. In general, they are intended to highlight 
different elements of human-induced ecosystem change, disease outcomes, and economic causes and 
consequences.  

What we have not discussed is the inherent dynamics of coupled natural and social systems. In a recent 
paper, for example, Pattanayak et al. (2006a) analyze global and micro data to show that malaria 
prevention behaviors depend on malaria prevalence. They find that households and countries engage in 
greater degree of prevention if they face high rates of malaria and fewer prevention behaviors if they 
confront low rates of malaria. That is, the causal arrow can also flow in the other direction (such an arrow 
is shown as a dotted arrow in Figure 1, typically missing from most assessments). This logical feedback 
and dynamic between prevention and prevalence suggests that it is insufficient and inappropriate to model 
and consider socio-economic behaviors as something outside the malaria infection and transmission 
process. Behavior and its determinants are part and parcel of the ecology and epidemiology and must be 
built into the analysis and planning. 

In fact, it is safe to say that many of these findings hold for a general class of vector-borne infectious 
diseases such as dengue, leishmaniasis, hantavirus pulmonary syndrome, schistosomiasis, filariasis, lyme 
disease, onchocerciasis and loiasis. Space limitations preclude a comprehensive discussion of these 
diseases (for additional details, see Wilson [2001] and tables 4 and 5 in Colfer et al. [2006], for example). 
As suggested in Figure 1, ecosystem changes influence the emergence and proliferation of these diseases 
by altering the ecological balance and context within which disease hosts or vectors and parasites breed, 
develop and transmit diseases (Patz et al 2000). For example, deforestation is often followed by water 
resources development and livestock management, which open up numerous possibilities for disease 
risks.  

Moreover, the simultaneity between prevalence and prevention discussed previously Pattanayak et al. 
(2006a) only points to the proverbial tip of the dynamic that is inherent in coupled natural and social 
systems. As Hammer (1993) suggests, in the case of malaria, very little is known about the inter-related 
dynamics of ecosystem changes, vector density and infectivity, development of immunity and resistance 
(to pesticides and drugs) and human response. Wiemer’s (1987) case of schistosomiasis in China and 
Gersovitz and Hammer’s (2005) model of malaria prevention and treatment are early attempts to examine 



these dynamics through mathematical simulations. Much more conceptual work is needed before 
ecosystem change dynamics can be incorporated into such models. Empirical research must test 
hypotheses about the nature and magnitude of these relationships and generate statistical parameters that 
can then be used for policy scenario analysis. 

In the interim, however, the human ecology approach to public health can take root and thrive through the 
conduct of systematic economic and health impact assessments of forest policies. Such evaluations need 
to be inter-disciplinary longitudinal studies, with at least the following features: 

1. It is impossible to design and implement a rigorous study and make credible inferences without a 
clear understanding of the policy scenario. Specificity of the policy scenario – be it a project at a site, 
a program that includes a collection of projects, or a nation/region-wide policy – allows the analyst to 
understand the mechanism of disease transmission and economic impacts in terms of ‘modifiable 
causes’.  

2. With a clear scenario, it is then possible to design rigorous evaluations to infer ‘causal policy 
impacts’. These are typically through randomized assignment of the program or a quasi-experimental 
design that includes data collection in program and control (non-program) sites during various stages 
of program implementation, including baseline (pre-program) and endline (post-program) data.  

3. The credibility of the resulting evaluation will ultimately ride on the quality of the data and the rigor 
and care in data analysis. For a study of this type, outcomes variables include indicators of health, 
wealth, and the environment.  Extent of forest cover and forest condition are among the key 
explanatory variables.  Other explanatory variables include socio-economic, demographic, 
environmental, health, and public health policy indicators.  The challenge in empirical work is to 
identify robust measures of these variables and separate independent and dependent variables. The 
multiple channels for feedback between malaria, deforestation and poverty suggest that these 
variables would be dependent variables in some specifications, and independent variables in other 
specifications and data sets.   

4. Although researchers can employ an array of sophisticated techniques to remedy defects in available 
data, clearly “prevention” in the form of careful data collection is superior to “cure” in the form of ad 
hoc statistical fixes.  Longitudinal data sets – and particularly panel data sets – are key to addressing 
at least three critical issues in the types of research proposed here: heterogeneity, endogeneity, and 
dynamics or mobility (Ezzati et al., 2005).  Ideally, data should be collected at several scales, ranging 
from individual level health and demographic data, to household level economic information, to 
community and regional level environmental statistics and policy factors. 

The human ecology approach proposed in this chapter that is built on these conceptual and empirical roots 
can be used for at least two practical purposes (Pattanayak et al. 2006c). First, it can help organize the 
conceptual links between coupled natural and socio-economic systems and serve as a platform for 
generating testable hypothesis and policy parameters. Such efforts are critical for understanding the 
ecological, entomological, epidemiological and economic aspects of deforestation, malaria, and their 
behavioral underpinnings. Second, it will be vital for building decision analysis and scenario simulation 
tools (Kramer et al., 2006), which rely on estimated parameters, for formulating integrated strategies that 
cut across health, environment and economic sectors to address the broad idea of ecosystem change and 
disease control. Scenario simulation can for example inform the design of surveillance and monitoring 
framework necessary to detect changes in the environment, vector density, human migration and 
behavior, and incidence of diseases in order to both contain vector-borne diseases and prevent epidemics.  



6. References3 

Amerasinghe FP, Amerasinghe PH, Peiris JSM, Wirtz R. 1991. Anopheline ecology and malaria infection 
during the irrigation development of an area of the Mahaweli project, Sri Lanka. Am J Trop Med 
Hyg 45:226-235. 

Amerasinghe FPA. 2003. Irrigation and mosquito-borne diseases. J Parasitol. Special Edition. Selected 
Papers of the 10th International Congress of Parasitology. 

Berkman, LF, and I Kawachi (eds.) 2000. Social Epidemiology. New York, Oxford University Press 
2000. 

Byron, N. and M. Arnold. 1999. “What Futures for the People of the Tropical Forests?” World 
Development 27(5): 789-805. 

Campbell-Lendrum D, Molyneux D et al (2005) Ecosystems and Vector-borne Disease Control. Chapter 
12 in Ecosystems and Human Well-being: Policy Responses, Volume 3. Millennium Ecosystem 
Assessment. Pages 353-372.     

Cheong WH. 1983. Vectors of filariasis in Malaysia. In: Filariasis (Mak JW, eds). Kuala Lumpur: 
Institute for Medical Research. Bulletin No.19, 37-44. 

Chivian E, eds. 2002. Biodiversity: Its Importance to Human Health, Interim Executive Summary. 
Boston, MA: Harvard Medical School. 

Colfer, C. J. P., D. Sheil, and M. Kishi. 2006. Forests and human health: assessing the evidence. CIFOR 
Occasional Paper. 111. Bogor, Indonesia, Center for International Forestry Research. 

Conn JE, Wilkerson RC, Segura MN, de Souza RT, Schlichting CD, Wirtz, RA, et al. 2002. Emergence 
of a new neotropical malaria vector facilitated by human migration and changes in land use. Am J 
Trop Med Hyg 66:18–22. 

Corvalan C, Hales S, McMichael A et al (2005a) Ecosystems and Human Well-being: Human Health 
Synthesis. Millennium Ecosystem Assessment. 63 pages. 

Corvalan C, Hales S, Woodward A et al (2005b) Consequences and Options for Human Health. Chapter 
16 in Ecosystems and Human Well-being: Policy Responses, Volume 3. Millennium Ecosystem 
Assessment. Pages 467-486.   

Donohue, M. 2003. “Causes and health consequences of environmental degradation and social injustice.”  
Social Science and Medicine 56: 573-587. 

Ezzati, M., J. Utzinger, S. Cairncross, A.J. Cohen and B.H. Singer. 2005. “Environmental risks in the 
developing world: exposure indicators for evaluating interventions, programmes, and policies”. 
Journal of Epidemiology and Community Health. 59: 15-22.  

Gersovitz, M., and J. Hammer. 2005. Tax/subsidy policies toward vector-borne infectious diseases. 
Journal of Public Economics 89 (4): 647–674 

Grillet ME. 2000. Factors associated with distribution of Anopheles aquasalis and Anopheles oswaldoi 
(Diptera: Culicidae) in a malarious area, northeastern Venezuela. J Med Entomol 37:231-238. 

Hammer, J., 1993. Economics “The economics of malaria control”. The World Bank Research Observer. 
8 (1): 1 – 22.   

                                                      
3 Citations in Table 1 are presented in Yasuoka and Levins (forthcoming). 



Hay, S.I., Guerra, C.A., Tatem, A.J., Noor, A.M., Snow, R.W. 2004 the Global Distribution and 
Population at Risk of Malaria: Past, Present and Future. The Lancet—Infectious Diseases 4: 327–
336.  

Ijumba JN, Lindsay SW. 2001. Impact of irrigation on malaria in Africa: paddies paradox. Med Vet 
Entomol 15:1-11. 

Karla NL. 1991. Forest Malaria Vectors in India: Ecological Characteristics and Epidemiological 
Implications. In: Forest Malaria in Southeast Asia (Sharma VP, Kondrashin AV, eds). New Delhi: 
WHO/MRC, 93-114. 

Kates, R.W., W.C. Clark, R. Corell, J.M. Hall, C.C. Jaeger, I. Lowe, J.J. McCarthy, H.J. Schellnhuber, B. 
Bolin, N.M. Dickson, S. Faucheux, G.G. Gallopin, A. Grubler, B. Huntley, J. Jager, N.S. Jodha, R.E. 
Kasperson, A. Mabogunje, P. Matson, and H. Mooney.  2001.  Sustainability science.  Science 
292(5517): 641-642. 

Kaufmann, D., Kraay, A., and Mastruzzi, H. 2003. Governance Matters III: Governance indicators for 
1996-2002. Washington, DC: World Bank.  

Keiser, J., B.H. Singer, and J. Utzinger.  2005.  Reducing the burden of malaria in different eco-
epidemiological settings with environmental management: a systematic review.  Lancet 
Infectious Diseases 5: 695-708. 

Kiszewski, A., Mellinger, A., Spielman, A., Malaney, P., Sachs, S.E. and Sachs, J. 2004. A Global Index 
of the Stability of Malaria Transmission. American Journal of Tropical Medicine and Hygiene 
70(5): 486-498. 

Kondrashin AV, Jung RK, Akiyama J. 1991. Ecological aspects of forest malaria in Southeast Asia. In: 
Forest Malaria in Southeast Asia (Sharma VP, Kondrashin AV, eds). New Delhi: WHO/MRC, 1-28.  

Konradsen F, Amerasinghe FP, van der Hoek W, Amerasinghe PH, eds. 2000. Malaria in Sri Lanka, 
Current Knowledge on Transmission and Control. International Water Management Institute. 

Kramer, RA, KL Dickinson, VG Fowler, ML Miranda, CM Mutero, KA Saterson, and JB Weiner.  2006.  
Decision Analysis as an Integrative Tool for Improved Malaria Control Policy Making.  Duke 
University Working Paper. 

Lindsay, S.W., and M. Birley.  2004.  Rural development and malaria control in Sub-Saharan Africa.  
EcoHealth 1: 129-137. 

Martens P. 1998. Health & Climate Change: Modeling the Impacts of Global Warming and Ozone 
Depletion. London: Earthscan. 

MacCormack, CP., 1984. “Human Ecology and Behavior in Malaria Control in Tropical Africa”. Bulletin 
of the World Health Organization. 62: 81-87 Suppl. S.  

McMichael, AJ. 2001. Human Frontiers, Environments and Disease: Past Patterns, Uncertain Futures. 
Cambridge, UK:Cambridge University Press. 

McMichael, A., Patz, J. and S. Krovats, 1998.  “Impacts of Global Environmental Change on Future 
Health and Health Care in Tropical Countries”.  British Medical Bulletin 54(2): 475-488. 

Molyneux DH. 1998. Vector-borne parasitic diseases – an overview of recent changes. Int J Parasitol 
28:927-934. 

Oakes, JM and JS Kaufman (eds). 2006. Methods in Social Epidemiology. John Wiley & Sons, Inc., San 
Francisco, California. 504 pages. 

Parkes, M., R. Panelli, and P. Weinstein.  2003. “Converging Paradigms for Environmental Health 
Theory and Practice.” Environmental Health Perspectives 111 (5): 669-675. 



Pattanayak, S.K, C. Poulos, K. Jones, J-C. Yang and G. Van Houtven. 2006a. “Economics of 
Environmental Epidemiology”. RTI Working Paper. Research Triangle Park, North Carolina.  

Pattanayak, S.K., M. Ross, C. Timmins, B. Depro, K. Jones, and K. Alger. 2006b. Climate Change, 
Human Health, and Biodiversity Conservation. Presented at U.S.E.P.A conference on 
Multidisciplinary Approach to Examining the Links Between Biodiversity and Human Health. 
Washington D.C., September.  

Pattanayak, S.K., K. Dickinson, C. Corey, E.O. Sills, B.C. Murray, and R. Kramer. 2006c. 
“Deforestation, Malaria, and Poverty: A Call for Transdisciplinary Research to Design Cross-
Sectoral Policies”.  Sustainability: Science, Practice and Policy.  2(2): 1-12 

Pattanayak, S.K., C.G. Corey, Y.F. Lau, and R. Kramer.  2005.  “Conservation and Health: A 
microeconomic study of forest protection and child malaria in Flores, Indonesia.” RTI Working 
Paper. Research Triangle Institute, North Carolina.  

Patz J, Confalonieri U et al (2005) Human Health: Ecosystem Regulation of Infectious Diseases. Chapter 
14 in Ecosystems and Human Well-being: Current State and Trends, Volume 1. Millennium 
Ecosystem Assessment. Pages 391-415. 

Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, et al. 2004. Unhealthy landscapes: Policy 
recommendations on land use change and infectious disease emergence. Environ Health Perspect 
112:1092-8. 

Patz JA, Graczyk TK, Gellera N, Vittor AY. 2000. Effects of environmental change on emerging parasitic 
diseases. Int J Parasitol 30:1395-405. 

Prothero RM. 1999. Malaria, Forests and People in Southeast Asia. Singap J Trop Geogr 20:76-85. 

Reiter P. 2001. Climate change and mosquito-borne disease. Environ Health Perspect 109(S1):141-161. 

Rose G. 1985. Sick individuals and sick populations. International Journal of Epidemiology 14 (1):32–38. 

Rosenberg R, Andre RG, Somchit L. 1990. Highly efficient dry season transmission in malaria in 
Thailand. Trans R Soc Trop Med Hyg 84:22-28. 

Rosenberg R, Maheswary NP. 1982. Forest Malaria in Bangladesh II: Transmission by An. dirus. Am J 
Trop Med Hyg 31:13-191. 

Sawyer, D. 1993.  Economic and social consequences of malaria in new colonization projects in Brazil. 
Social Science and Medicine 37 (9): 1131–1136.  

Sharma VP, Kondrashin AV, eds. 1991. Forest Malaria in Southeast Asia. New Delhi: WHO/MRC. 

Sills, E. O., and S. K. Pattanayak. 2006. “Tropical Tradeoffs: An Economics Perspective on Tropical 
Deforestation”.  Chapter 5 n S. Spray and M. Moran (eds.), Tropical Deforestation. Rowman and 
Littlefield Publishers Inc. Pages 104-128 

Singh YP, Tham A. 1990. Case history of malaria control through the application of environmental 
management in Malaysia. WHO/WBC/88.960. 

Smith, KR, Corvalán, CF and T. Kjellstrom, 1999.  “How Much Global Ill Health is Attributable to 
Environmental Factors?”  Epidemiology 10: 573-584. 

Suvannadabba S. 1991. Deforestation for Agriculture and its Impact on Malaria in Southern Thailand. In: 
Forest Malaria in Southeast Asia (Sharma VP, Kondrashin AV, eds). New Delhi: WHO/MRC, 221-
226. 

Taylor D. 1997. Seeing the forests for more than the trees. Environ Health Perspect 105:1186-1191. 



Walsh JF, Molyneux DH, Birley MH. 1993. Deforestation: effects on vector-borne disease. Parasitology 
106(suppl):55-75. 

Wiemer, Calla. 1987. "Optimal Disease Control through Combined Use of Preventive and Curative 
Measures." Journal of Development Economics 25: 301-19. 

Wessen, A. F. 1972. “Human Ecology and Malaria”. American Journal of Tropical Medicine and 
Hygiene. 21(1): 658-662. 

Wilcox, B.A., and R.R. Colwell.  2003.  Emerging and reemerging infectious diseases: biocomplexity as 
an interdisciplinary paradigm.  EcoHealth 2: 244-257. 

Wilson, ME. 1995. “Infectious Diseases: an Ecological Perspective.” British Medical Journal, 311(7021): 
1681-1684. 

Wilson, ML. 2001. “Ecology and Infectious Disease.” In Ecosystem Change and Public Health J. Aron, 
and J.A. Patz. (eds.) The Johns Hopkins University Press: Baltimore, MD: 285-291. 

Yasuoka J, Levins R.(forthcoming). Impact of Deforestation and Agricultural Development on 
Anopheline Ecology and Malaria Epidemiology.  American Journal of Tropical Medicine and 
Hygiene. 

Yasuoka, J., T. W. Mangione, A. Spielman, and R. Levins. 2006a. "Impact of education on knowledge, 
agricultural practices, and community actions for mosquito control and mosquito-borne disease 
prevention in rice ecosystems in Sri Lanka." Am J Trop Med Hyg 74(6): 1034-42. 

Yasuoka, J., R. Levins, TW Mangione and A. Spielman. 2006b. Community-based rice ecosystem 
management for suppressing vector anophelines in Sri Lanka. Transactions of the Royal Society of 
Tropical Medicine and Hygiene 100: 995—1006 

 

 

 



Table 1. Ecosystem change and malaria 

Density decrease Density increase Increased human contacts Deforestation/ 
Agricultural 
development 

Country/ 
Region 

Species Malaria Species Malaria Species Malaria 
References 

Thailand An. dirus -         Taylor 1997 

Nepal An. minimus   An. fluviatilis       Sharma VP. 2002  

India   An. fluviatilis    Kalra 1991  

An. barbirostris   An. annularis +     

  An. jamesii +   

  An. nigerrimus +   

  An. subpictus +   

Sri Lanka 

    A peditaeniatus ?     

Amerasinghe and Ariyasena 1990, 
Konradsen et al. 2000  

Deforestation 

Sahel, Africa An. funestus           Mouchet et al. 1996 

An. labranchiae -         

An. sacharovi -     
Land exploitation/ 
pollution 

Mediterranea
n 

An. superpictus -         

Coluzzi 1992 

Cacao plantation Trinidad     An. bellator       Downs and Pittendrigh 1946, Ault 1989  

Thailand An. dirus - An. minimus +     Bunnag et al. 1978, Sornmani 1987, 
Prothero 1999 Cassava 

Thailand An. dirus -         Rosenberg et al. 1990 

Sugarcane Thailand An. dirus   An. minimus + 
    

Sornmani 1972, Sornmani 1974, Bunnag et 
al.1978 

Coffee plantation 
+ irrigation dams India An. fluviatilis -     Kalra 1991 

+ tree crops Thailand     An. minimus +     Suvannadabba 1991 



Density decrease Density increase Increased human contacts Deforestation/ 
Agricultural 
development 

Country/ 
Region 

Species Malaria Species Malaria Species Malaria 

References 

Tea plantation Sri Lanka     A. culicifacies        Jones 1951 

Rubber Malaysia 
 

 An. maculatus + 
  

Cheong 1983, Singh and Tham 1990, 
Walsh et al. 1993 

Thailand 
  

  An. dirus + 
   

Rosenberg and Maheswary 1982, 
Prasittisuk et al. 1989, Rosenberg et al. 
1990    + Fruits 

Thailand     An. dirus       Prasittisuk et al. 1989 

   + Orchards Thailand     An. dirus +     Taylor 1997 

China   An. sinensis    
Baolin 1988, Service 1989, van der Hoek 
et al. 2001 

Malaysia An. umbrosus - A. campestris +     Ooi 1959, Sandosham 1970 

Indonesia   An. aconitus +   Marwoto and Arbani 1991 

Southeast 
Asia An. dirus           Kondrashin et al. 1991 

Nepal An. fluviatilis  A. culicifacies + 
  

Walsh et al. 1993, Sharma et al. 1984, 
Subedi et al. 2000, Reuben 1989  

An. annularis   An. jamesii       

An. barbirostris  An. subpictus    

An. culicifacies      
Sri Lanka 

An. varuna           

Amerasinghe et al. 1991, Konradsen et al. 
2000  

  An. funestus    

Rice 

Africa 
    An. gambiae       

Mouchet et al. 1996, Reiter 2001 

Rice + maize Thailand An. dirus   An. minimus   
    

Prasittisuk et al. 1989, Konradshin et al. 
1991 



Density decrease Density increase Increased human contacts Deforestation/ 
Agricultural 
development 

Country/ 
Region 

Species Malaria Species Malaria Species Malaria 

References 

India     An. culicifacies +     Ault 1989, Amerasinghe et al. 1991 

Afghanistan An. superpictus   An. 
pulcherrimus + 

    
Service 1989, Amerasinghe et al. 1991 

    An. arabiensis +     
Africa 

    An. gambiae +     
Service 1989, Amerasinghe et al. 1991 

Sahara     An. gambiae +     Coluzzi 1984, Coluzzi 1992 

Irrigation system 

Guyana An. darlingi   An. aquasalis + 
    

Ault 1989, Amerasinghe et al. 1991 

Hydropower dam Sri Lanka     An. culicifacies +     Wijesundera 1988, Konradsen et al. 2000  

Malaysia     An. sundaicus +     Ooi 1959, Walsh et al. 1993 

Indonesia     An. sundaicus +     Marwoto and Arbani 1991  

Clearing of 
mangroves/ 
swamps for fish 
pond or mining Indonesia     An. sundaicus       Ooi 1959, Sandosham 1970 

Mining Thailand     An. dirus  Kondrashin et al. 1991  

+ settlement Amazon 
  

  An. darlingi + 
    

Marques 1987, Conn et al. 2002 

Amazon An. darlingi           Tadei et al. 1998, Tadei and Thatcher 
2000, Conn et al. 2002 

Indonesia     A. balabacensis + Marwoto and Arbani 1991  

A. balabacensis           
Indonesia 

A. leucosphyrus   
  

  
    

Marwoto and Arbani 1991  

Settlements + 
urbanization or 
highway 
construction 

India     An. stephensi +     Kalra 1991  

Source: Yasuoka, J., Levins, R. 2007. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am. 
J. Trop. Med. Hyg.



Table 2.  Empirics of ‘human ecology’ modeling of malaria and deforestation links 

4a. MACRO naïve linear controls IV 

annual forest increase -0.049 -0.089 -0.168 
p.value (0.065) (0.013) (0.038) 

    
ecology controls yes yes yes 

behavioral controls no yes as IV 
    

Pseudo RSq. 0.407 0.519 0.540 
    

4b. MESO naïve linear controls IV 

deforestation 7.89e-07 2.25e-06 6.99e-06 
p.value (0.047) (0.000) (0.004) 

    
ecology controls yes yes yes 

behavioral controls no yes as IV 
    

Pseudo RSq. 0.461 0.555 0.235 
    

4c. MICRO naïve linear controls IV 

log (primary forests) -0.062 -0.163 -0.382 
p.value (0.497) (0.106) (0.046) 

log (secondary forests) 0.234 0.401 0.609 
p.value (0.006) (0.000) (0.008) 

    
ecology controls yes yes yes 

behavioral controls no yes as IV 
    

Pseudo RSq. 0.055 0.153 0.153 



Figure 1. Ecology of vector-borne diseases - impact of human activities 

 

  
 


